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@ Results

1 QC and Reads Mapping
In the project numbered F17FTSAPJT0170 FUNxovR, we sequenced 6 samples of

Aspergillus_Nidulans species using RNA-Seq technology[l][z], averagely generating
7,417,146 raw sequencing reads and then 7,416,375 clean reads after filtering low quality
(see Data Filtering in method page). Tablel briefly summarizes information of sequencing
data for each sample. Distribution charts of base composition and base quality on clean
reads are also presented, respectivelyin Figurel.

After filtering, clean reads are mapped to reference using HISAT (3 Bowtie2 [l tool
(see Reads Mappingin method page for details). The average mapping ratio with reference
gene is 66.75% and Table2 lists seperate mapping rate for each sample. The average
genome mapping ratio is 92.92% corresponding to Table3. We conducted strict quality
control for each sample from several aspects as illustrated in Table4, to evalute whether the
sequencing data are qualified.

Table1l Summaryofsequencing data foreachsample (Download)

Sample Sequencing R.aw Data Raw Reads C!ean Data Clean Reads Clean Data
Strategy Size (bp) Number Size (bp) Number Rate (%)
Cont_24h_1_C1_24h SE50 393,684,963 8,034,387 393,638,168 8,033,432 99.98
Cont_48h_1_C1_48h SE50 357,848,960 7,303,040 357,809,809 7,302,241 99.98
Diploid_24h_1_D1_24h  SE50 340,837,728 6,955,872 340,795,735 6,955,015 99.98
Diploid_48h_1_D1_48h  SE50 330,045,723 6,735,627 330,021,762 6,735,138 99.99
Humic_24h_1_H1_24h  SE50 350,334,173 7,149,677 350,291,739 7,148,811 99.98
Humic_48h_1_H1_48h  SE50 407,889,524 8,324,276 407,857,135 8,323,615 99.99

CleanData Rate (%)=CleanReads Number/Raw Reads Number
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Figure 1 Distribution of base compositiononcleanreads.

Xaxisis base positions alongreads. Y axis is base quality value. Each dotintheimage represents the
number of total bases with certain quality value of the corresponding base along reads. Darker dotcolor
means greater bases number. If the percentage of the bases with low quality (< 20)is very high, then the

sequencing quality of this laneis bad. If one sample name appears several times in the rightbox, that

means itis consisted of more than one sequencing lane.
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Table 2 Alignmentstatisticsofreadsaligntoreferencegene (Download)

Sample Total Total Mapped Unique Multi-position Total Unmapped
Reads Reads (%) Match(%) Match (%) Reads (%)
Cont_24h_1_C1_24h 8,033,432 63.00 62.73 0.27 37.00
Cont_48h_1_C1_48h 7302241 6254 62.29 0.25 37.46
Diploid_24h_1_D1_24h 6,955015 69.25 68.89 0.36 30.75
Diploid_48h_1_D1_48h 6,735138 68.72 68.50 0.23 31.28
Humic_24h_1_Hl1_24h 7,148,811 69.71 69.38 0.33 30.29
Humic_48h_1_H1_48h 8,323,615 67.26 66.97 0.29 3274

TotalMapped Reads (%) = Unique Match (%) + Multi- position Match (%).

Table 3 Alignmentstatistics ofreadsaligntoreferencegenome (Download)

Sample Total Total Mapped Unique Multi-position Total Unmapped
LEETH Reads (%) Match(%) Match (%) Reads (%)

Cont_24h_1_C1_24h 8,033,432 86.68 83.99 2.69 13.33
Cont_48h_1_C1_48h 7,302,241 88.81 86.09 2.72 11.19
Diploid_24h_1_D1_24h 6,955015 94.23 91.38 2.85 577
Diploid_48h_1_D1_48h 6,735138 96.43 93.79 2.64 3.57
Humic_24h_1_Hl1_24h 7,148,811 9517 92.36 2.81 483
Humic_48h_1_H1_48h 8,323,615 96.20 9342 2.78 3.80

TotalMapped Reads (%) = Unique Match (%) + Multi- position Match (%).

Table 4 QCitemsforeachsample (Download)

Sample Clean Readl Clean Readl Ger}e Unique Mapping Ger}ome Mapping
Q20(%) >= 95 Q30(%) >= 90 Ratio (%) >= 80 Ratio (%) >= 50

Cont_24h_1_C1_24h 98.9 (Y) 96.6 (Y) 8.03 (Y) 99.57 (Y) 86.68 (Y)
Cont_48h_1_C1_48h 98.9 (Y) 96.7 (Y) 7.30 (Y) 99.60 (Y) 88.81 (V)
Diploid_24h_1_D1_24h 98.9 (Y) 96.6 (Y) 6.96 (Y) 99.48 (Y) 94.23 (Y)
Diploid_48h_1_D1_48h 98.9 (Y) 96.8 (Y) 6.74 (Y) 99.68 (Y) 96.43 (Y)
Humic_24h_1_H1_24h  98.9 (Y) 96.8 (Y) 7.15(Y) 99.53 (Y) 95.17 (Y)
Humic_48h_1_H1_48h  98.9 (Y) 96.7 (Y) 8.32(Y) 99.57 (Y) 96.2 (Y)

'Y'means sample passed this QCitemand 'N'means failed.

2 Sequencing Saturation and Reads Randomness

Sequencing data saturation analysis is used to measure whether the depth of
sequencing data is sufficient for informatic analysis. With the number of sequenced reads
increasing, the number of identified genes is also increased. However, when the number of
sequenced reads reaches a certain amount, the growth curve of identified genes flattens,
indicating that the number of identified genes tends to reach the saturation. Figure2
displays saturation analysis for each sample.

The distribution of the reads on reference gene reflects whether each part of the gene
body are evenly sequenced. If the randomness is good, the reads in every position(from 5'
terminal to 3' terminal) would be evenly distributed. If the randomness is poor, reads
preference to specific gene region will directly affect subsequent bioinformatics analysis.
We use the distribution of reads on the reference genes to evaluate the fragmentation
randomness, showing as Figure3.
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Figure 2 urve of sequencing saturation.

X-axis shows the number of clean reads, unitsis 100 k -- extreme value is currently the volume of
sequencing. Y-axis shows the ratio of identified gene number to number of total gene reportedin
database.
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Figure 3 Reads distribution onreference gene.

Because of varialbe lengths of reference genes, the average length of genes is divided into N equal parts.
Each equal partis called a window. X-axis shows the relative position of genes, and Y-axis shows the
number of reads in each window.

3 Gene Expression

Genes expression level is quantified by a software package called RSEM [5l(see Gene
Quantification in method page). We counted the number of identified expressed genes and
calculated its proportion to total gene number in database for each sample as Figure4.
Meanwhile, the distribution of gene number on different expression level for each sample
are shown as Figure5, from which would help us can get a general idea about how genes
express at high and low level. The following listed file suffixed with gene. FPKM .xIs are
results of gene expression for each sample (see File Format of Gene Expression Resultin
help page). The file all.gene. FPKM .xlIsis a expression table for all samples with brief gene
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description and annotation.

Table5 Cont 24h_1_C1 _24h.gene.FPKM.xls (Download)
Table6 Cont 48h_1_C1 48h.gene.FPKM.xls (Download)
Table7 Diploid_24h_1_D1 24h.gene.FPKM.xls (Download)
Table 8 Diploid_48h_1 D1 _48h.gene.FPKM.xls (Download)
Table9 Humic_24h_1 H1 24h.gene.FPKM.xls (Download)
Table10 Humic_48h_1_H1 48h.gene.FPKM.xls (Download)
Table 11 all.gene.FPKM.xls (Download)
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Figure4 Number of identied genes.

X-axisis sample name. Y-axis is number of identified expressed genes. The proportion atthe top of each
bar equals expressed genes number devided by total gene number reported in database.
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X-axisis FPKM value (the coordinate has been changed by logarithmfor better view). Y-axis is gene
number of corresponding FPKM.
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4 Deep Analysis on Sample Level

For multiple samples, we can do more deep analysis based on gene expression to do a
comprehensive assess on the whole project.

Correlation bewteen Samples

Biological replicates are required for almost every biological experiment, and high-

throughput sequencing technology is no exception 6] The correlation of gene expression
level among samples is a key criterion to test whether the experiments are reliable and
whether the samples chosen are reasonable. We calculate correlation value bewteen each
two samples based on normalized expression result and draw correlation heatmap as
Figure6 (click All.correlation.stat.xls to see concrete values).Cluster tree presenting the
distance among samples is also builtas Figure7.

Clustering of Gene Expression

Genes with similar expression patterns usually have same functional correlation. So we
perform clustering analysis of gene expression patterns with cluster [71[8land javaTreeview
software [ according to the provided cluster plans. Please read detailed report named
expCluster_en.html unber project result folder BGI_result/3.QuantitativeAnalysis/GeneCluster
(see the section How to Read Report of Clustering Analysisin method page). We also provide
complete intersection and union gene expression heatmap for each cluster plan as Figure8
and Figure9respectively.

Venn Charts of Genes

What's more, we can draw venn chart to display common genes between(among)
samples as FigurelOaccording to the provided plans.
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Figure 6 Heatmap of correlation coefficientvalues acrossing samples.

Gradientcolor barcode atthe righttop indicates the minimumvalue in white and the maximumin blue. If
onesampleis highlysimilar with another one, the correlation value between themis verycloseto 1.
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Figure 7 Clustertreeinvolvingall samples.

The distances of expressed gene are calculated by euclidean method. Meanwhile, the algorithm of Sumof
Squares of Deviations is used to calculate the distance between samples so thatcluster tree can be build.
Y axis means heightinthe cluster tree. When samples have similar heightvalues, they are easily to be
gathered.
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Figure 8 Intersection heatmap of gene expression for each cluster plan.

Only genes thatexpressedinall samples of cluster plan are used to build this heatmap. Gradientcolor
barcode atthe righttop indicates log2 (FPKM) value. Each row represents a gene and each column
represents a sample(for some reasoninR method, if thereis only one sample, the sample name doesn’t
appearin bottom). Genes with similar expression value are clustered both atrow and column level.
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Hierarchical Clustering of gene expressions(Union)
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Figure 9 Union heatmap of gene expression for each cluster plan.

Genes thatexpressedin atleastone sample of cluster plan are used to build this heatmap. Non-
expressed genes value will be replaced with a very small value 0.001. Gradientcolor barcode atthe right
topindicates log2(FPKM) value. Each row represents a gene and each columnrepresents a sample.
Genes with similar expression value are clustered both atrow and column level.
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Figure 10 Venn chartof co-expressed genes between (among) samples.

For two samples, the figureis proportional, butcan'tbe proportional when sample numberis more than 2.
The pipeline supports atmost5samples to draw one venn chart.

5 Screening Differentially Expressed Genes (using possionDis)

DEGs screening is aimed to find differential expressed genes between samples and
perform further function analysis on them. We use possion distribution method to do this
analysis(see Screening DEGs using Possion Distribution Method in method page).

All expressed genes of each pairwise are stored in *.GeneDiffExp.xlsand screened DEGs
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are storedin *.GeneDiffExpFilter.xls. They have the same file format and are listed as
following (The name before "-VS-" is control and after itis treatment case. Please see DEGs
screening Format (using possionDis)in help page):

Table12 Cont 24h_1 C1_24h-VS-Cont 48h_1 _C1 _48h.GeneDiffExp.xls (Download)
Table13 Cont 24h_1 C1_24h-VS-Cont_48h_1 _C1_48h.GeneDiffExpFilter.xls (Download)
Table14 Cont 24h_1 _C1 _24h-VS-Diploid_24h_1 D1_24h.GeneDiffExp.xls (Download)
Table 15 Cont 24h_1 C1_24h-VS-Diploid_24h_1 D1_24h.GeneDiffExpFilter.xls (Download)
Table16 Cont 24h_1 C1 _24h-VS-Diploid_48h_1 D1_48h.GeneDiffExp.xls (Download)
Table17 Cont_24h_1_C1_24h-VS-Diploid_48h_1_D1_48h.GeneDiffExpFilter.xls (Download)
Table 18 Cont 24h_1 C1_24h-VS-Humic_24h_1 H1 24h.GeneDiffExp.xls (Download)
Table19 Cont 24h_1 C1_24h-VS-Humic_24h_1_H1 24h.GeneDiffExpFilter.xls (Download)
Table20 Cont 24h_1 C1_24h-VS-Humic_48h_1_H1 48h.GeneDiffExp.xls (Download)
Table21 Cont 24h_1 C1_24h-VS-Humic_48h_1_H1 48h.GeneDiffExpFilter.xls (Download)
Table22 Cont_48h_1_C1 _48h-VS-Diploid_24h_1 D1_24h.GeneDiffExp.xls (Download)
Table23 Cont _48h_1_C1_48h-VS-Diploid_24h_1 D1_24h.GeneDiffExpFilter.xls (Download)
Table24 Cont_48h_1_C1 _48h-VS-Diploid_48h_1 D1 _48h.GeneDiffExp.xls (Download)
Table25 Cont 48h_1_C1_48h-VS-Diploid_48h_1 D1_48h.GeneDiffExpFilter.xls (Download)
Table26 Cont _48h_1 _C1_48h-VS-Humic_24h_1 H1 24h.GeneDiffExp.xls (Download)
Table27 Cont_48h_1 C1_48h-VS-Humic_24h_1 H1_24h.GeneDiffExpFilter.xls (Download)
Table28 Cont_48h_1_C1_48h-VS-Humic_48h_1_H1 48h.GeneDiffExp.xls (Download)
Table29 Cont 48h_1 _C1_48h-VS-Humic_48h_1_H1 48h.GeneDiffExpFilter.xls (Download)
Table 30 Diploid_24h_1 D1 _24h-VS-Diploid_48h_1 D1 _48h.GeneDiffExp.xls (Download)

Table3l Diploid_24h_1_D1_24h-VS-Diploid_48h_1 D1_48h.GeneDiffExpFilter.xls
(Download)

Table 32 Diploid_24h_1 D1_24h-VS-Humic_24h_1 H1_24h.GeneDiffExp.xls (Download)
Table 33 Diploid_24h_1 D1 _24h-VS-Humic_24h_1 H1_24h.GeneDiffExpFilter.xls (Download)
Table 34 Diploid_24h_1 D1_24h-VS-Humic_48h_1 H1_48h.GeneDiffExp.xls (Download)
Table 35 Diploid_24h_1 D1 _24h-VS-Humic_48h_1 H1_48h.GeneDiffExpFilter.xls (Download)
Table 36 Diploid_48h_1 D1 _48h-VS-Humic_24h_1 H1_24h.GeneDiffExp.xls (Download)
Table 37 Diploid_48h_1 D1 48h-VS-Humic_24h_1 _H1 24h.GeneDiffExpFilter.xls (Download)
Table 38 Diploid_48h_1 D1 _48h-VS-Humic_48h_1 H1_48h.GeneDiffExp.xls (Download)
Table 39 Diploid_48h_1 D1 _48h-VS-Humic_48h_1 H1_48h.GeneDiffExpFilter.xls (Download)
Table40 Humic_24h_1_H1 24h-VS-Humic_48h_1 H1 48h.GeneDiffExp.xls (Download)
Table41l Humic_24h_1 H1 24h-VS-Humic_48h_1_H1 48h.GeneDiffExpFilter.xls (Download)

For result list of each control-treatment pair above(*.GeneDiffExp.xls), we draw scatter
plots of all expressed genes as Figurell and volcano graph as Figurel2 to present the
distribution of DEGs in screening threshold dimensions. At last, an histogram is drawed to
show significantup-down regulation gene numbers in each pairwise as Figurel3.
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Define: Regulated {FDR <= 0.001 & abs(iog2(Y/X)) >= 1} = No (5736) ~ Up (1934) = Down (1190)

Cont_24h 1 C1 2
VS-
Cont_48h_1_C1
Cont_24h_1 C1 2
VS-
Diploid_24h_1_D1
Cont_24h_ 1 C1 2
VS-
Diploid_48h_1_D1
Cont_24h_1 C1 2
VS-
Humic_24h_1 H1_
Cont_24h_1 C1 2
VS-
Humic_48h_1_H1
Cont_48h_1_C1

0 2 4
log10(Gene Expression Level of Cont_24h_1_C1_24h) ®

| 48h)
K

f Cont 48h_1_C1
o

.

log10(Gene Expression Level of

Figure 11 Scatter plots of all expressed genes ineach pairwise.

X-axis and Y-axis presentlog?2 value of gene expression. Blue means down-regulation gene, orange
means up-regulation gene and brown means non-regulation gene. If a gene expressed justinone sample,
its expression value inanother sample will be replaced by the minimumvalue of all expressed genes in
control and case samples. Screening thresholdis ontoplegend.
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Figure 12 Volcano graph of all expressed genes ineach pairwise.
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X-axis and Y-axis presentthreshold value inlogtransform. Each dotis a differential expressed genes.
Dots inred meansignificantDEGs which passed screening threshold and black dots are non-significant
DEGs. Threshold can be known fromFigurellabove.
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Figure 13 Statistic of differentially expressed genes.

Xaxis represents pairwise and Y axis means number of screened DEGs. Blue bar denotes down-regulated
genes and orange bar for the up-regulated.

6 Screening Differentially Expressed Genes (using Noiseq)

DEGs screening is aimed to find differential expressed genes between samples and
perform further function analysis on them. We use NOISeq method to do this analysis(see
\title{Screening DEGs using NOISeq method} in method page). For NOISeq method,
samples should be firstly grouped so that comparison between every two groups as a
control-treatment pairwise can be done later. The provided group information is as
following:

24h:Cont_24h_1_C1_24h,Diploid_24h_1 D1 _24h,Humic_24h_1 _H1 24h
48h:Cont_48h_1_C1_48h,Diploid_48h_1 D1 48h,Humic_48h_1 H1 48h
Cont:Cont 24h_1_C1_24h,Cont 48h_1 C1 48h
Diploid:Diploid_24h_1_D1_24h,Diploid_48h_1_D1_48h
Humic:Humic_24h_1 H1 24h,Humic_48h_1_H1 _48h

All expressed genes of each pairwise are stored in *.GeneDiffExp.xlsand screened DEGs
are storedin *.GeneDiffExpFilter.xls. They have the same file format and are listed as
following (The name before "-VS-" is control and after itis treatment case. Please see DEGs
screening Format (using Noiseq) in help page):

Table 42 24h-VS-48h.GeneDiffExp.xls (Download)

Table 43 24h-VS-48h.GeneDiffExpFilter.xls (Download)

Table 44 Cont-VS-Diploid.GeneDiffExp.xls (Download)

Table 45 Cont-VS-Diploid.GeneDiffExpFilter.xls (Download)
Table 46 Cont-VS-Humic.GeneDiffExp.xls (Download)

Table 47 Cont-VS-Humic.GeneDiffExpFilter.xIs (Download)
Table 48 Diploid-VS-Humic.GeneDiffExp.xls (Download)
Table 49 Diploid-VS-Humic.GeneDiffExpFilter.xls (Download)

For result list of each control-treatment pair above(*.GeneDiffExp.xls), we draw scatter
plots of all expressed genes as Figurel4 and volcano graph as Figurel5 to present the
distribution of DEGs in screening threshold dimensions. At last, an histogram is drawed to
show significantup-down regulation gene numbers in each pairwise as Figurelé6.
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Define: Regulated {Probability >= 0.8 & abs(log2(Y/X)) >= 1} = No (7734) * Up (747) = Down (708)
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Figure 14 Scatter plots of all expressed genesineach pairwise.

X-axis and Y-axis presentlog?2 value of gene expression. Blue means down-regulation gene, orange
means up-regulation gene and brown means non-regulation gene. If a gene expressed justinone sample,
its expression value inanother sample will be replaced by the minimumvalue of all expressed genes in
control and case samples. Screening thresholdis ontoplegend.
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Figure 15 Volcano graph of all expressed genes ineach pairwise.

X-axis and Y-axis presentthreshold value inlogtransform. Each dotis a differential expressed genes.
Dots inred meansignificantDEGs which passed screening threshold and black dots are non-significant
DEGs. Threshold can be known fromFigurel4above.
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Figure 16 Statistic of differentially expressed genes.

Xaxis represents pairwise and Y axis means number of screened DEGs. Blue bar denotes down-regulated
genes and orange bar for the up-regulated.

7 Clustering Analysis of DEGs
Genes with similar expression patterns usually have same functional correlation. So we
perform clustering analysis of differentially expressed genes with cluster (71 18] and

javaTreeview software 9] according to the provided cluster plans for DEGs. Please read
report named cluster_en.html under project result folder
BGI _result/3.QuantitativeAnalysis/GeneDiff_Function/Cluster/ (see How to Read Report of
Clustering Analysis in help page). We also provide complete intersection and union DEGs
heatmap for each cluster plan as Figurel7 respectively(intersection DEGs heatmap is

empty).
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Figure 17 Union heatmap of DEGs for each cluster plan.
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Genes thatexpressedinall pairwises of cluster plan and differentially expressedin atleastone pairwise
are used to build this heatmap. Gradientcolor barcode atthe righttop indicates log2(FC) value (FC,
Foldchange of expressionintreatmentcase to expressionin control case). Eachrowrepresents a DEG
and each columnrepresents one condition pairwise(for some reasonin R method, if thereis onlyone
pairwise, the pairwise name doesn’tappearin bottom). DEGs with similar foldchange value are clustered
both atrow and column level.

8 Gene Ontology Analysis of DEGs

Annotation analysis of Gene Ontology (GO) are performed for screened DEGs and then
generate a report named GOView.html/ under the project folder
BGI_result/3.QuantitativeAnalysis/GeneDiff Function/GO/ (see the section Gene Ontology
Annotation in method page and the section How to Read Report of GO Annotation in help

page). After getting GO annotation for DEGs, we use WEGO software [101to do GO functional
classification as Figurel8to help understand the distribution of gene functions of the specie
from the macro level.
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Figure 18 GO functional classification on DEGs for each pairwise.

X axis means number of DEGs (the number is presented by its square rootvalue). Y axis represents GO
terms. All GO terms are grouped into three ontologies: blueis for biological process, brownis for
cellular componentand orangeis for molecular function.

9 Pathway Enrichment Analysis of DEGs
Genes usually interact with each other to play roles in certain biological functions. We

perform pathway enrichment analysis of DEGs based on KEGG database 11and generate a
report for DEGs in each pairwise respectively, stored in project result folder
BGI _result/3.QuantitativeAnalysis/GeneDiff Function/Pathway/(see the section KEGG Pathway
Enrichmentin method page and the section How to Read Report of Pathway Enrichmentin
help page). In addition, we generate a scatter plot for the top 20 of KEGG enrichment results
as Figurel9and a bar plot for the statistics of KEGG terms types as Figure20.
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Figure 19 Statistics of pathway enrichmentof DEGs in each pairwise.

RichFactoris the ratio of differentially expressed gene numbers annoted in this pathway termto all gene
numbers annoted in this pathway term. Greater richFator means greater intensiveness. Qvalueis
corrected pvalueranging from0~1, and less Qvalue means greater intensiveness. We justdisplay the

top 20 of enriched pathway terms.
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Figure 20 KEGG classification on DEGs for each pairwise.

X axis means number of DEGs. Y axis represents second KEGG pathway terms. All second pathway terms
are grouped intop pathway terms indicated in differentcolor.

@ Methods

1 Experiment Pipeline

Each step in experiment process (like sample test, library construction and sequecing)
influences data quality and quantity, and then directly affect bioinformatics analysis results.
To get high realiable sequencing data, we carry out strict quality control in each experiment
step. The experimentpipelineis described as Figurel.
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Figure1l RNA-Seqexperimental process.

The total RNAsamples are firsttreated with DNase | to degrade any possible DNA contamination. Then
the mRNA s enriched by using the oligo (dT) magnetic beads. Mixed with the fragmentation buffer, the
mMRNA is fragmented into shortfragments. Thenthe firststrand of cDNAis synthesized by using random
hexamer-primer. Buffer, dNTPs, RNase H and DNA polymerase | are added to synthesize the second
strand. The double strand cDNAis purified with magnetic beads. End reparationand 3’-end single
nucleotide A (adenine) additionis then performed. Finally, sequencing adaptors are ligated to the
fragments. The fragments are enriched by PCR amplification. During the QC step, Agilent2100
Bioanaylzer and ABI StepOnePlus Real-Time PCR Systemare used to qualify and quantify of the sample

library. The library products are ready for sequencing via lllumina HiSeq™2000 or other sequencer
when necessary.

2 Bioinformatics Pipeline

After getting raw data, we will do each bioinformitics analysis as the client appoints on
contract. Figure2demonstrates a complete pipeline for RNA-Seq (Quantification) project.

16/29



c I +

visualization

Map rate statistics
Distribution of
reads on gene

e

Sequencing
saturation

Alignment with
gene/genome
reference

—
Qc of aligW

Gene

expression

| N !

PCA Correlation stat and | |Condition specifity Cluster Co-expression Screening of differentially
analysis gene venn diagram analysis analysis network analysis expressed genes

h 4

v ¥
. Gene Ontology Pathway enrichment Protein-protein interaction Transcription factor
Cluster analysis i hreicl
analaysis analysis network ¥ ysis( just for plants)

Figure 2 Bioinformatics analysis pipeline.

Primary sequencing data thatproduced by I1lumina HiSeq™2000, called as raw reads, is subjected to
quality control (QC) to determine if a resequencing step is needed. After QC, raw reads are filtered into
cleanreads which will be aligned to the reference sequences. QC of alignmentis performed to determine
ifresequencingis needed. The alignmentdatais utilized to calculate distribution of reads on reference
genes and mapping ratio. Ifalignmentresultpasses QC, we will proceed with downstreamanalysis
including gene expression and deep analysis based on gene expression (PCA/correlation/screening
differentially expressed genes and so on). Further, we also can performdeep analysis based on DEGs,
including Gene Ontology (GO) enrichmentanalysis, KEGG pathway enrichmentanalysis, cluster
analysis, protein-proteininteraction network analysis and finding transcription factor.

3 Data Filtering

We define "dirty" raw reads as reads which contain the sequence of adaptor, high
content of unknown bases and low quality reads. They need to be removed before
downstream analysis to decrease data noise. Filtering steps are as follows:

1) Remove reads with adaptors;
2) Remove reads in which unknown bases are more than 10%;

3) Remove low quality reads (the percentage of low quality bases is over 50% in a read,
we define the low quality base to be the base whose sequencing quality is no more than 5).

After filtering, the remaining reads are called "clean reads" and stored as FASTQ format
[12](see FASTQ Formatin help page).

4 Reads Mapping
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In general, the higher ratio of alignment, indicating that the closer the genetic
relationship between sample and reference species. The lower rate may be due to low
similarity with reference species or there are other pollutions.

We use Bowtie2 lto map clean reads to reference gene and use HISAT [3]to reference
genome. Their alignment parameters change a little according different sequencing
strategy (PE or SE):

Bowtie2 parameters for PE reads: -q --phred64 --sensitive --dpad 0 --gbar 99999999 --mp
1,1--np1--score-minL,0,-0.1-11-X1000--no-mixed --no-discordant -p 16 -k 200

Bowtie2 parameters for SE reads: -q --phred64 --sensitive --dpad 0 --gbar 99999999 --mp
1,1--np1--score-minL,0,-0.1-p 16 -k 200

HISAT parameters for PE reads: -p 8 --phred64 --sensitive --no-discordant--no-mixed -1 1 -
X 1000

HISTA parameters for SE reads: -p 8 --phred64 --sensitive -1 1 -X 1000

To learn about concrete meaning of Bowtie2 parameters, please refer to "Options"
section in website http://computing.bio.cam.ac.uk/local/doc/bowtie2.html#. And refer to
"Options" section in website http://ccb.jhu.edu/software/hisat2/manual.shtml to know about
HISAT .

5 Gene Quantification

RSEM [l js a quantification tool that computed Maximum likelihood abundance
estimates using the Expectation Maximization (EM) algorithm for its statistical model,
including the modeling of paired-end (PE) and variable-length reads, fragment length
distributions, and quality scores, to determine which transcripts are isoforms of the same
gene.

FPKM method is used in calculated expression level, the formula is shown as following
formula:

106¢
NL/103

FPKM=

Given to be the expression of gene A, C to be number of fragments that are aligned to
gene A, N to be total number of fragments that are aligned to all genes, and L to be number
of bases on gene A. The FPKM method is able to eliminate the influence of different gene
length and sequencing discrepancy on the calculation of gene expression. Therefore, the
calculated gene expression can be directly used for comparing the difference of gene
expression among samples.

6 Screening DEGs using Possion Distribution Method

Referring to "The significance of digital gene expression profiles"[13], we have
developed a strictalgorithm to identify differentially expressed genes between two samples.
Denote the number of unambiguous clean tags (which means reads in RNA_Seq) from gene
A as x, given every gene's expression occupies only a small partof the library, x yields to the
Poisson distribution:

e—i /lx

Ax): A is the real transcripts of the gene )

(
x!
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The total clean tag number of the sample 1is N1, and total clean tag number of sample 2
is Ny; gene A holds x tags in sample 1 and y tags in sample 2. The probability of gene A
expressed equally between two samples can be calculated with:

=y

2> p(i|x)

=0

or 2x(1-3. pli1 ) @ Y, pti] 1) >0.5)

N x+ )
ply|x)=C2Y ( A?’)
! x!y!(1+ﬁ2)(x|y|1)

1

We do correction on P-value corresponds to differential gene expression test using

bonferroni method [24], Since DEG analysis generate a large multiplicity problems in which
thousands of hypothesis (is gene x differentially expressed between the two groups) are
tested simultaneously, correction for false positive (type | errors) and false negative (type Il)

errors are performed using FDR method [15] Assume that we have picked outR differentially
expressed genes in which S genes really show differential expression and the other V genes
are false positive. If we decide that the error ratio "Q = V / R" must stay below a cutoff (e.qg.
5%), we should preset the FDR to a number no larger than 0.05. We use ' FDR = 0.001 and
the absolute value of Log2Ratio = 1' as the defaultthreshold to judge the significance of gene
expression difference. More stringent criteria with smaller FDR and bigger fold-change
value can be used to identify DEGs.

7 Screening DEGs using NOISeq

NOISeq method [16] can screen differentially expressed genes between two groups,
showing a good performance when comparing it to other differential expression methods,
like Fisher's Exact, Test(FET),edgeR,DESeq and baySeq. NOISeq maintains good True Positive
and False Positive rates when increasing sequencing depth, while most other methods show
poor performance. What's more, NOISeq models the noise distribution from the actual data,
soitcan better adaptto the size of the data set, and is more effective in controlling the rate of
false discoveries.

First, NOISeq uses sample's gene expression in each group to calculate
log2(foldchange) M and absolute different value D of all pair conditons to build noise
distribution model.

M = log> (%) and D' = |x}-x;

Second, for gene A, NOISeq computes its avearge expression "Control_avg" in control
group and average expression "Treat avg" in treatment group. Then the foldchange (
Ma=log2((Treat_avg)/(Control_avg))) and absolute different value D (Dpa=|Congrol_avg-

Treat avg|) will be got. If Mpand D pdiverge from noise distribution model markedly, gene A
will be defined as a DEG. There is a probability value to assess how Mpand D p both diverge

from noise distribution model:
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Pi=P (M= {M} && Ds= {D})

Finally, we screen differentially expressed genes according to the following default
criteria: Foldchange =2 and diverge probability =0.8.

8 Gene Ontology Annotation

Gene Ontology (GO), which is an international standard gene functional classification
system, offers a dynamic-updated controlled vocabulary, as well as a strictly defined
concept to comprehensively describe properties of genes and their products in any
organism. GO has three ontologies: molecular function, cellular component and biological
process. The basic unitof GO is GO-term. Every GO-term belongs to a type of ontology.

GO enrichment analysis provides all GO terms that significantly enriched in a list of
DEGs, comparing to a genome background, and filter the DEGs that correspond to specific
biological functions. This method firstly maps all DEGs to GO terms in the database
(http://www.geneontology.org/), calculating gene numbers for every term, then uses
hypergeometric test to find significantly enriched GO terms in the input list of DEGs, based
on 'GO::TermFinder' (http://www.yeastgenome.org/help/analyze/go-term-finder), we have
developed a strictalgorithm to do the analysis, and the method used is described as follow:

i)\ n—i

P — 1 e T ==
=0 (;)

m—1 ( M)(’ N—M)

Where N is the number of all genes with GO annotation; n is the number of DEGs in N; M
is the number of all genes thatare annotated to certain GO terms; mis the number of DEGs in

M. The calculated p-value goes through Bonferroni Correction [14] taking corrected p-value
= 0.05 as a threshold. GO terms fulfilling this condition are defined as significantly enriched
GO terms in DEGs. This analysis is able to recognize the main biological functions that DEGs
exercise.

9 KEGG Pathway Enrichment

Pathway-based analysis helps to further understand genes biological functions. KEGG

[11] (the major public pathway-related database) is used to perform pathway enrichment
analysis of DEGs. This analysis identifies significantly enriched metabolic pathways or
signal transduction pathways in DEGs comparing with the whole genome background. The
calculating formula is the same as thatin GO analysis. Here N is the number of all genes that
with KEGG annotation, n is the number of DEGs in N, M is the number of all genes annotated
to specific pathways, and m is the number of DEGs in M.

@ Help
1 FASTQ Format

The original image data is transferred into sequence data via basecalling , which is
defined as raw data or raw reads and saved as FASTQ file. Those FASTQ files are the original
data provided for users, including detailed read sequences and the read quality information.
In each FASTQ file, every read is described by four lines, listed as follows:
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@ABO0GVTABXX:4:1:2587:1979#ACAGTGAT/1
NTTTGATATGTGTGAGGACGTCTGCAGCGTCACCTTTATCGGCCATGGT

+
BMMTKZXUUUdddddddddddddddddddddddddddadddddd~WYYU

The firstand third lines are sequences names generated by the sequence analyzer; the
second line is sequence; the fourth line is sequencing quality value, in which each letter
corresponds to the basein line 2; the base quality is equal to ASCIl value of the character in
line 4 minus 64, e.g. the ASCIl value of c is 99, then its base quality value is 35. Tablel
demonstrates the relationship between sequencing error rate and the sequencing quality
value. Specifically, if the sequencing error rate is denoted as E and base quality value is
denoted as Q, the relationship is as following formula:

E
1—E
Y

E=
1+Y
5Q

= e-10xlogl0

5Q=-10x (log

)/(10g10)

Y

Table 1 Relationship between sequencing error rate and sequencing quality value (Download)

Sequencing Error Rate(%) Sequencing Quality Value Character
1.00 20 T
0.10 30 ~
0.01 40 h

More detaild information about FASTQ format can be got in website
http://en.wikipedia.org/wiki/FASTQ_format.

2 BAM Format

Mapping results are stored in BAM file, which is binary equivalent of SAM file. SAM, short
for Sequencing Alignment/Map, is human-readable text file with the format illustrated in
Table2. And each bit in the FLAG field is defined as Table3. Samtools can do format
conversion between BAM and SAM, and support more complex tasks like variant calling and
alignment viewing as well as sorting, indexing, data extraction. Please refer to
http://samtools.sourceforge.net/samtools.shtm|#5 go get more details about samtools.

Table 2 Columndescription of SAM format (Download)
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(of.]] Field Description

1 QNAME Query template/pair NAME

2 FLAG bitwise FLAG

3 RNAME Reference sequence NAME

4 POS 1-based leftmost POSition/coordinate of clipped sequence

5 MAPQ MAPping Quality (Phred-scaled)

6 CIAGR extended CIGAR string

7 MRNM Mate Reference sequence NaMe (‘=’ if same as RNAME)

8 MPOS 1-based Mate POSistion

9 TLEN inferred Template LENgth (insert size)

10 SEQ query SEQuence on the same strand as the reference

11 QUAL query QUALIity (ASCII-33 gives the Phred base quality)

12+ OPT variable OPTional fields in the format TAG:VTYPE:VALUE
Table 3 Flag descriptionin SAM format (Download)

Flag Chr Description

0x0001 p the read is paired in sequencing

0x0002 P the read is mapped in a proper pair

0x0004 u the query sequence itself is unmapped

0x0008 V] the mate is unmapped

0x0010 r strand of the query (1 for reverse)

0x0020 R strand of the mate

0x0040 1 the read is the first read in a pair

0x0080 2 the read is the second read in a pair

0x0100 s the alignment is not primary

0x0200 f the read fails platform/vendor quality checks

0x0400 d the read is either a PCR or an optical duplicate

If necessary, BAM files of genome mapping resultcan be provided for clients in pipeline.
We also recommend using IGV (letegrative Genomics Viewer) tool to visualize BAM file in
different scales. IGV supports loading of multiple samples to do comparison in the same
scale, and can view distribution of reads on the Exon, Intron, UTR, and Intergenic regions,
which makes it very convenient and intuitional. Figure2 is an example and please read the
brief user of IGV that we provided in project result. More information about IGV tool is
available in website http://www.broadinstitute.org/software/igv/UserGuide.
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Figure 2 Ascreenshotof |GV interface.

This example loads two samples into IGV tool in window operation system.

3 File Format of Gene Expression Result

Gene expression result of each sample is stored in tab-seperated text file named *.gene.
FPKM .xIs (* presents sample name) with the formatdescription in Table4.

Table 4 Formatdescriptionofgene expressionresultfile (Download)

Field Description

gene_id gene ID number

transcript_id(s) trascript list of gene, seperated by comma

length length of gene after model regulation

expected_count support reads number to this gene after model regulation
FPKM FPKM value of this gene

4 DEGs screening Format (using possionDis)

The result of differentially expressed genes which are screened by possion distribution
method in each control-treatment pairwise is stored in tab-seperated text file named
*.GeneDiffExpFilter.xls (* presents pairwise name) with the formatdescription in Table5.

Table5 Formatdescription of DEGs screening resultfile (Download)
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Field Description

genelD Identity of gene

genelLength Gene length

samplel-Expression Reads number that uniquely mapped to gene(sample samplel)
sample2-Expression Reads number that uniquely mapped to gene(sample sample2)
samplel-FPKM Gene expression in sample samplel

sample2-FPKM Gene expression in sample sample2

log2 Ratio(sample2/samplel) Log?2 (folds of differentially expressed)
Up-Down-Regulation(sample2/samplel) Gene up or down regulation (compare to samplel)in sample sample2
P-value P-value from difference test

FDR FDR value

Symbol Gene symbol

Description Brief gene description

KEGG Orthology KEGG annotation

GO Component GO Compoment annotation

GO Function GO Function annotation

GO Process GO Process annotation

Blast nr NR annotation

5 DEGs screening Format (using Noiseq)

The result of differentially expressed genes which are screened by NOISeq method in
each control-treatment pairwise is stored in tab-seperated text file named *.GeneDiffExp.xls
(* presents pairwise name) with the formatdescription in Table6.

Table 6 Formatdescription of DEGs screening resultfile (Download)

Field Description

GenelD Identity of gene

genelLength Gene length

Means-groupA mean expression (FPKM) of groupA
Means-groupB mean expression (FPKM) of groupB
log2Ratio(s2/s1) Log2(folds of mean expression in two groups)
Up-Down-Regulation(groupB/groupA) Gene up or down regulation (compared to groupA) in sample groupB
Probability probability of difference

Symbol Gene symbol

Description Brief gene description

KEGG Orthology KEGG annotation

GO Component GO Compoment annotation

GO Function GO Function annotation

GO Process GO Process annotation

Blast nr NR annotation

6 How to Read Report of Clustering Analysis

Since we use the same tool (cluster [71[8 and javaTreeView 19]) to do gene expression
clustering and DEGs foldchange clustering, they share nearly the same report format. So we
just do illustration of this report based on DEGs clustering result. Make sure that your
computer has installed Java and use |IE brower to open cluster_en.html. The interface is as the
Figure3.
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Clustering Analysis of Expression Pattern

Clustering Analysis of the Intersection of Differentially Expressed Genes:
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Clustering Analysis of the Union of Differentially Expressed Genes:
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Figure 3 The webpage interface of clustering analysis report.

Each cluster plan whichis consisted of more than one pairwise, has two types clustering results:
intersectionand union. Click"Gene list" to see whatgenes are used to do clustering and their foldchange
values ineach pairwise. Click the button "View Result", the JavaTreeView will work and interactive
clustering tree interface will appear as Figure4.
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Figure 4 Clusteringimage of gene foldchange levels.

Each columnrepresents an experimental condition (e.g. expl-VS-exp2),eachrow represents a gene.
Log2(Foldchange) values are shownin differentcolors. Red means up regulation and green means down
regulation. When the line pointed by the leftarrow is clicked, the color of the branches derived fromthe
clickedline changes to red. And the corresponding genes or gene annotations are shown on the right. The
middleis justanamplification of the hierarchical clustering of the chosen genes.

Please refer to website: http://jtreeview.sourceforge.net/manual.html to get more
operating instructions.

7 How to Read Report of GO Annotation

Make sure that the computer has installed java and use |IE brower to open GOView.html.
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The left navigation includes three types of GO terms for each control-treatment pairwise (C:
cellular component, P: biological process, F: molecular function). Click one of them, the
enriched GO terms resultwill be listed as Figure5.

Gene Ontology term Cluster frequency | G frequency of use Corrected P- Expressi
value Profile
BLOC complex (view zenes) Elo kit 28 8 out of 16090 genes, 0.0% |0.03943 View Res
24% T :
2 2
cvtosol (view zenes) - j‘;f of 82 genes. 15 out of 16090 genes, 0.1% (0.14450 View Res
s )
cytosolic part (view genes) i :;10{ 82 genes. 15 out of 16090 genes, 0.1% |0.14450 View Res
2 5
ntraceliular part (view enes g.; 2101; of 82 genes, ;1_6101 out of 16090 genes, 1 @

Figure 5 Significantly enriched GO terms in DEGs.

Column 1is GO termname. Column 2 is the ratio of DEGs enriched to this GO term. Column 3 is the ratio of
genes enrichedto this GO termin background database. Column 4 is Corrected P-value which indicates
the degree of enrichmentand the smaller Corrected P-value, the more significantly DEGs enriched to this
GO term. Theresultlisthas been sorted by Corrected P-value. Column 5is clustering of foldchange value

for these enriched DEGs using the tools cluster [71[8]and javaTreeView [91(see the section How to Read
Reportof Clustering Analysisin help page).

Click the term name 'BLOC complex' inFigure5, you <can go to
http://amigo.geneontology.org/amigo for more information when the computer is Internet-
connected. Click 'view genes' in Figure5, you can getgene IDs that enriched to this GO term

as Figure6.

BLOC complex
cytosol

63915, 100526837
63915, 100526837

Figure 6 GenelD listrelatedto GO terms.

There are two DEGs enriched to the term'BLOC complex': 63915, 100526837.

8 How to Read Report of Pathway Enrichment

Open html reportfor pathway enrichmentresultand the enriched KEGG pathways will be
listed as Figure?.

1. sample3-VS-sampled

DEGs with All genes with
# Pathway amnotation | amotation | PYAlve | Quame [P
(1432) (17252)

1 |Pathways in cancer 81 (5.66%) 531 (3.08%) 5.562454e-08|1.074132e-05 [ko05200
2 |Focal adhesion 74 (5.17%) 475 (2.75%) 8.877128e-08|1.074132e-05 |ko04510
3 |Leukocyte transendothelial migration |46 (3.21%) 280 (1.62%) 5.86161e-06 |3.950743e-04 |k0046}'0
4 |Rheumatoid arthritis 25 (1.75%) 115 (0.67%) 6.530153e-06|3.950743e-04 |ko05323
5 [Malaria 19 (1.33%) 76 (0.44%) 1.00329e-05 |4.855924e-04 (ko05144

Figure 7 Pathway enrichmentanalysis of DEGs.

Column Lis ordinal number. Column 2 is pathway name. Column 3 is the ratio of DEGs enriched to this
pathway. Column 4 is the ratio of genes enriched to this pathway in background database. Pvalue and
Qvalue are both values thatindicate the degree of enrichmentand Qvalueis corrected Pvalue. The
smaller they are, the more significantly DEGs enriched to this pathway. The resultlisthas been sorted by
Qvalue. The lastcolumn pathway ID corresponding to pathway name.
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Click pathway name 'Leukocyte transendothelial migration' in Figure7, you can getgene
IDs thatenriched to itas Figure8.

146850, 654463, 5909, 4318, 1364, 402415, 3383, 2888, 100528016, 5175, 9404,

3 Leukocyte transendothelial 149461, 285590, 5880, 50507, 79778, 58494, 8572, 8481, 6525, 5603, 90799,
migration 55691, 100506649, 29970, 4739, 6876, 55679, 5010, 9076, 9411, 26509, 9758,

10398, 8727, 7412, 7070, 6387, 8502, 7430, 7414, 71, 60, 4771, 80014, 51306

2921, 6364, 6374, 3576, 3553, 4319, 2920, 2919, 3552, 4314, 2353, 4312, 3589,
100288077, 3383, 7099, 7422, 1514, 7040, 533, 7042, 6387, 284, 5157, 6347

4 |Rheumatoid arthritis

Figure 8 GenelD listrelated to pathway.

There are 46 DEGs enriched to the pathway 'Leukocyte transendothelial migration'.

Furtherly, detecting the most significant pathways, the enrichment analysis of DEG
pathway significance, allows us to see detailed pathway information in KEGG database. For
example, clicking the hyperlink on 'Leukocyte transendothelial migration' in Figure8will get
detailed information as shown in Figure9.

* Up regulated
K08007: 55691 (1.1)
o K05763: 55691 (1.1)

Bhod

Leukocyte

Endothelium

ITRAL] e 1

Figure 9 Anexample of KEGG pathway of ' Leukocyte transendothelial migration'.

Up-regulated genes are marked with red borders and down-regulated genes with green borders. Non-
change genes are marked with black borders. When mouse hover on border with red or green, the related
DEGs appear on the top left. Clicking gene name in the figure, the page will redirectto KEGG website if the

computeris Internet-connected.

@ FAQs

Does it need biology repeat? If so, how many times are needed?

Yes, it needs at least two biological repeats, more than 3 times is much better. Article of Hansen in July 2011 showed that
biological difference is gene expression characteristic, no related to the detection technology, data dispose either. High-
effected magazines may refuse the draftif we don't set biological repeats.

Must genome reference be provided using RNA-Seq method?
No, but reference sequence is needed. Unigene, MmRNA and CDS can be treat as reference sequence.
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What is the relationship between genome size and the recommended amount of sequencing
data using RNA-Seq method?

The recommended sequencing data is mainly related to gene number. Though different species diverse in genome size,
there is little difference in coding gene number of general species (about 30,000). So we generally recommend 10M clean
reads forHiSeq and lon Proton platform, 20M clean reads for CG platform.

When preparing library, why you use RNA fragmentation instead of cDNA fragmentation?
Please referto the reference 'RNA-Seq: a revolutionary tool for Transcriptomics'.

What information can we get from the *.md5sum files?

In the Linux or Unix environment, md5sum is a program used to calculate and check the result files. *.md5sum files are
generated by the computer program md5sum which is commonly used to verify the integrity of files.

How to understand the figure in randomness analysis? What's the criterion for randomness?

Randomness is one of criterions for sequencing quality. At present, there is no criterion to evaluate the randomness.
Generally speaking, if the randomness is good, the reads would be evenly distributed on reference sequence.

In the Gene Expression Difference Analysis, for example 1vs2, how to understand the up-
regulated and down-regulated?

1vs2 means sample 1 is control and sample 2 is case. In the comresponding files 1-VS-2.GeneDiffExp.xIs and 1-VS-
2.GeneDiffExpFilter.xls, if a gene is up, it means the expression of this gene is up-regulated in sample 2 compared to sample
1.

In the figure of pathway enrichment analysis, why the number of gene is not equal to colored
borders?

Because each border in figure represents one kind of enzyme, and the function of an enzyme is participation of several
genes, one border maybe related to many genes.

Why is gene mapping rate always lower than genome mapping rate?

The reason may be following: 1)Gene database that used in pipeline is not completed; 2)There are new transcripts in
sequencing data; 3)Sequencing reads comes from noncoding regions, resulting in the situation that they can't map to gene
as wellas genome.
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